Similitude laws in centrifuge modelling
Content

- Principle of scaling laws – Vashy-Bukingham theorem
- Scaling laws for centrifuge tests
- Scaling laws of water flow in centrifuge
- Grain size effects on interface and shear band pattern
Vaschy-Buckingham theorem

« If we have a physically meaningful equation involving a certain number, \(n \), of physical variables, and these variables are expressible in terms of \(k \) independent fundamental physical quantities, then the original expression is equivalent to an equation involving a set of \(p = n - k \) dimensionless parameters constructed from the original variables. »

\[
\begin{align*}
\mathbf{f}(X_1, X_2, \ldots, X_n) &= 0 \\
\text{for } i = 1, n \quad &X_i \rightarrow r_1^{\alpha_{1i}} \times r_2^{\alpha_{2i}} \times \cdots \times r_k^{\alpha_{ki}} \\
\text{for } i = 1, n-k \quad &\pi_i \rightarrow X_1^{\beta_{1i}} \times X_2^{\beta_{2i}} \times \cdots \times X_n^{\beta_{ni}} \\
\bar{\mathbf{f}}(\pi_1, \pi_2, \ldots, \pi_{n-k}) &= 0
\end{align*}
\]

Significance: Two systems for which these dimensionless parameters coincide are called similar (they differ only in scale); they are equivalent for the purposes of the equation.
• Application on the equation of dynamic equilibrium

\[
\text{div}\left(\sigma_p\right) + \rho_p \left(g_p + \frac{\partial^2}{\partial t^2} (\xi_p)\right) = 0
\]

- Direct method

\(\sigma^* = \frac{\sigma_m}{\sigma_p}\)	\(\rho^* = \frac{\rho_m}{\rho_p}\)
\(g^* = \frac{g_m}{g_p}\)	\(t^* = \frac{t_m}{t_p}\)
\(\xi^* = \frac{\xi_m}{\xi_p}\)	\(L^* = \frac{L_m}{L_p}\)

\[
\frac{\sigma^*}{\rho^* g^* L^*} = 1
\]

\[
\frac{\xi^*}{g^* t^{*2}} = 1
\]

\(n=6\)

\(k=3\)

- \(\sigma_p\): stress tensor
- \(u_p\): distance
- \(\rho_p\): density
- \(g_p\): volumic forces
- \(t_p\): time
- \(\xi_p\): displacement

L: meter
M: mass
T: time
- Second method

\[f(\sigma, u, \rho, g, t, \xi) = 0 \]

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>T</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma)</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>(u)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\rho)</td>
<td>1</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>(g)</td>
<td>1</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>(t)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\xi)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Rank 3 \(\rightarrow p=3 \)

General expression of the non-dimensional parameters

\[\pi_i = \sigma^{\alpha_i} \times u^{\alpha_{ui}} \times \rho^{\alpha_p} \times g^{\alpha_{gi}} \times t^{\alpha_{ti}} \times \xi^{\alpha_{\xi i}} \]

\[
\begin{align*}
\pi_1 &= 1 = \frac{\sigma^*}{\rho^* g^* h^*} \\
\pi_2 &= 1 = \frac{\xi^*}{g^* t^*} \\
\pi_3 &= 1 = \frac{\xi^*}{u^*}
\end{align*}
\]
Scalling law for reduce scale tests

Experimental work on geotechnical structures

- Models at reduce scale scaling factor $L^* = 1/n$
- Test at $1g: g^* = 1$
- Material with the same density: $\rho^* = 1$

$\xi^* = 1/n$
$\varepsilon^* = 1$
$\sigma^* = 1/n$
$t^* = 1/n$

Hooke law

$$\sigma_{ij} = \frac{E}{1+n\nu}\left(\varepsilon_{ij} + \frac{\nu}{1-2\nu}\varepsilon_{kk}\delta_{ij}\right)$$

$$E' = \frac{1}{n}E$$

Mechanical characteristics of the material must be modified

$$1/n\sigma_{ij} = \frac{E}{1+n\nu}\left(\varepsilon_{ij} + \frac{\nu}{1-2\nu}\varepsilon_{kk}\delta_{ij}\right)$$

$$\nu' = \nu$$
Some examples of 1g tests problem on reduced scale model

- Bearing capacity of shallow foundation (De Beer cited by Corté, 1989; Garnier, 2003)

Terzaghi (1943)

\[q_u = \frac{1}{2} \gamma B N_\gamma (\phi) \]

Effect of B on Ny for cohesionless soils \(\Rightarrow K_n = \frac{q_u(B)/B}{q_u(B_0)/B_0} \)

Comabrieu (1997)

\[q_u = \frac{1}{2} \gamma B N_\gamma (B) \]

\[N_\gamma (B) = \frac{4A}{3\gamma} \left(\lambda + \frac{3}{2B} \right) \frac{\sin \phi (1 + \sin \psi)}{1 + \sin \phi} \]

Sol : \(E = E_0(1 + \lambda z) \)

(Garnier, 2003)
• Some example of 1g tests problem on reduced scale model

• Suction anchors (Puech A)

• Shallow foundation – reinforcement with a geotextil (Garnier 1995 – 1997)
• Centrifuge tests

- First idea: Phillips (1869) – France

- First tests: Bucky (1931) – USA
 Pokrovskii (1933) - URSS

1 scaling factor is fixed – same stress in the model and in the prototype

\[
\sigma^* = 1 + \text{Same soil} \\
\rho^* = 1
\]

\[
g^* = n
\]
• Scaling law for centrifuge tests

Technical committee 2 (TC2) of the ISSMGE

Available one line : http://www.tc2.civil.uwa.edu.au
Scalling law derived from the equation of equilibrium + $\sigma^* = 1$

| $\pi_1 = 1 = \frac{\sigma^*}{\rho^* g^* h^*}$ |
| $\pi_2 = 1 = \frac{\xi^*}{g^* t^*}$ |
| $\pi_3 = 1 = \frac{\xi^*}{u^*}$ |

<table>
<thead>
<tr>
<th>Scaling factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
</tr>
<tr>
<td>stress</td>
</tr>
<tr>
<td>soil density (same soil as prototype)</td>
</tr>
<tr>
<td>gravity</td>
</tr>
<tr>
<td>displacement</td>
</tr>
<tr>
<td>dynamic time</td>
</tr>
<tr>
<td>strain</td>
</tr>
<tr>
<td>velocity</td>
</tr>
<tr>
<td>acceleration</td>
</tr>
<tr>
<td>frequency</td>
</tr>
<tr>
<td>force</td>
</tr>
<tr>
<td>Unit weight</td>
</tr>
<tr>
<td>mass</td>
</tr>
</tbody>
</table>

$v^* = \frac{\xi^*}{t_{dyn}^*}$

$a^* = \frac{v^*}{t_{dyn}^*}$

$f^* = \frac{1}{t_{dyn}^*}$

$F^* = \sigma^* \times u^*^2$

$m^* = \rho^* \times u^*^3$

$\gamma^* = \rho^* \times g^*$
Vertical stress with depth in centrifuge tests

For a constant ω, centrifuge acceleration varies with depth

$$\omega^2 = \frac{G}{R_n}$$

Minimum difference for $R_n = H/3$ below the soil surface

$$d\sigma_v = \rho G dr = \rho R \omega^2 dR$$

$$\sigma_v = \int_{R_0}^{R} \rho R \omega^2 dR = \frac{\rho G}{2R_n} \left(R^2 - R_0^2 \right)$$
Scaling law of water flow in centrifuge models

Navier Stokes equation (incompressible and Newtonien fluid)

\[
\frac{\partial u_p}{\partial t_p} + (u_p \cdot \text{grad}_p) \cdot u_p = g_p - \frac{1}{\rho_p} \text{grad}_p P_p + \nu_p \Delta_p u_p
\]

Dimensional analysis (direct method)

\[
\frac{\partial u_m}{\partial t_m} + (u_m \cdot \text{grad}_m) \cdot u_m = \frac{u_{fl}^2}{g \cdot x} g_m - \frac{\rho_{fl} u_{fl}^2}{P^*} \frac{1}{\rho_p} \text{grad}_p P_p + \frac{u_{fl}^* x^*}{\nu^*} \nu_p \Delta_p u_p
\]

Froude number

\[
F_r^* = \frac{u_{fl}^2}{g \cdot x} = 1
\]

Reynolds number

\[
R_e^* = \frac{u_{fl}^* x^*}{\nu^*} = 1
\]

\[
P^* = 1 \text{ and } \rho_{fl}^* = 1
\]

\[
u_p^* = 1
\]
• Scaling law of water flow in centrifuge models

Dimensional analysis (second method)

Hypothesis: not deformable porous media, incompressible and Newtonian fluid

\[f(P, u_{fl}, d_p, L, \mu, \rho) = 0 \]

- \(P \): fluid pressure
- \(u_{fl} \): microscopic fluid velocity (interstitial velocity)
- \(d_p \): pore diameter
- \(L \): length
- \(\mu \): dynamic viscosity
- \(\rho \): density of the fluid

(Babendrier, 1991; Stephensen, 1979; Menand, 1995)

Friction factor

\[F_f^* = \frac{i^* d_p^* g^*}{u_{fl}^*} \]

Reynolds number

\[R_e^* = \frac{\rho^* u^* x^*}{\mu^*} = 1 \]
- Scaling law of water flow in centrifuge models

Flow regimens
- Permanent flow
- Transient flow

Flow medium
- Friction factor
 \[F_f^* = \frac{i^* d^* g^*}{u_f^*} \]
- Reynolds number
 \[Re^* = \frac{\rho^* u^* x^*}{\mu^*} \]

Flow domain
- Forchheimer equation
 \[u_f = K_f i \]
 \[i = av_{fl} + bv_{fl}^2 + c \frac{\partial v_{fl}}{\partial t} \]

- Flow in porous media
- Creeping flow
 - Laminar flow without or with non-linear convective inertia forces
- Flow (ex: waves)
- Fully turbulent flow

- **Friction factor**
- **Reynolds number**
- **Forchheimer equation**
Scaling law of water flow in centrifuge models

<table>
<thead>
<tr>
<th>Scaling factor</th>
<th>Scaling factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>L^*</td>
</tr>
<tr>
<td>soil density</td>
<td>ρ_{soil}</td>
</tr>
<tr>
<td>gravity</td>
<td>g^*</td>
</tr>
<tr>
<td>dynamic time</td>
<td>t_{dyn}^*</td>
</tr>
<tr>
<td>velocity</td>
<td>v^*</td>
</tr>
</tbody>
</table>

- **Same fluid**
- **Same soil**

<table>
<thead>
<tr>
<th>Scaling factor</th>
<th>Scaling factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion time</td>
<td>T_{diff}^*</td>
</tr>
<tr>
<td>Fluid velocity</td>
<td>V_{fl}^*</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>μ</td>
</tr>
</tbody>
</table>

First approach

Darcy’s formulation

\[
v_{fl} = K_{fl}i = \frac{k g}{\mu} i
\]

\[
i = \frac{\Delta h}{L} \Rightarrow i^* = 1
\]

\[
K_{fl} = \frac{i}{v_{fl}} = n
\]

Second approach

Hydraulic gradient express as a pressure

\[
v_{fl} = K_{flp} \text{grad} P = \frac{k}{\mu} \text{grad} P
\]

\[
i^* = \frac{P^*}{L} = n
\]

\[
K_{flp} = \frac{i^*}{v_{fl}} = 1
\]
Scaling law of water flow in centrifuge models

Fluid flow in porous media - permanent flow regimen

<table>
<thead>
<tr>
<th>Same fluid</th>
<th>Same soil 2nd approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling factor</td>
<td></td>
</tr>
<tr>
<td>distance</td>
<td>(L^*)</td>
</tr>
<tr>
<td>soil density</td>
<td>(\rho_{\text{soil}}^*)</td>
</tr>
<tr>
<td>gravity</td>
<td>(g^*)</td>
</tr>
<tr>
<td>dynamic time</td>
<td>(t^*_\text{dyn})</td>
</tr>
<tr>
<td>velocity</td>
<td>(v^*)</td>
</tr>
</tbody>
</table>

Friction factor

\[
F_f^* = \frac{i^* d_i^* g^*}{v_{fl}^*} = \frac{n \times 1 \times n}{n} = n
\]

Reynolds number

\[
R_e^* = \frac{\rho^* v^* d_i^*}{\mu^*} = \frac{1 \times n \times 1}{1} = n
\]
Scaling law of water flow in centrifuge models

Static domain – permanent regimen: limit of validity of the Darcy law
(Khalifa et al., 2000; Goodings, 1994; Bezuijen, 2010; Wahuydy, 1998)

- Several definition of the reynolds number and friction factor in soils

\[
F_f = \frac{\text{ign}^3 d_{eq}}{3 \nu_n \tau^3 (1-n)} \quad R_e = \frac{2 \rho v_n \tau d_{eq}}{3 \mu (1-n)}
\]

(Khalifa et al., 2000)

\[
F_f = \frac{id_{50} gn^2}{v_f^2} \quad R_e = \frac{\rho v_f d_{50}}{n \mu}
\]

(Goodings, 1994)

\[
R_e = 3.9 - 5.5 \, (5\%)
\]

(Khalifa et al., 2000)

\[
R_e = 3.3
\]

(Goodings, 1994)
• Scaling law of water flow in centrifuge models

Static domain – permanent regimen: limit of validity of the Darcy law

Pokrovski & Fyodorov, 1975 : maximum hydraulic gradient for static geotechnical problems : \(i_{\text{max}} = 1 \)

<table>
<thead>
<tr>
<th></th>
<th>Fontainbleau</th>
<th>Labenne</th>
<th>Hostun</th>
<th>Le Rheu</th>
<th>Loire</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{50})</td>
<td>0.21</td>
<td>0.3</td>
<td>0.35</td>
<td>0.55</td>
<td>0.65</td>
</tr>
<tr>
<td>5% error</td>
<td>78</td>
<td>36</td>
<td>21</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>10% error</td>
<td>155</td>
<td>72</td>
<td>43</td>
<td>23</td>
<td>5</td>
</tr>
</tbody>
</table>

Maximum gravity level for similar behaviour between model and prototype (Khalifa et al., 2000)
Scaling law of water flow in centrifuge models

Dynamic domain \(\frac{\partial v}{\partial t} \neq 0 \) \rightarrow Non steady state flow

Same fluid
Same soil

<table>
<thead>
<tr>
<th>Dynamic time</th>
<th>Scaling factor</th>
<th>Diffusion time</th>
<th>Scaling factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic time</td>
<td>(t^{*}_{\text{dyn}}) (1/n)</td>
<td>Diffusion time</td>
<td>(t^{*}_{\text{diff}}) (1/n^2)</td>
</tr>
<tr>
<td>velocity</td>
<td>(v^*) (1)</td>
<td>Fluid velocity</td>
<td>(v^{*}_{\text{fl}}) (n)</td>
</tr>
</tbody>
</table>

Forchheimer equation

\[
i = av_{\text{fl}} + bv_{\text{fl}}^2 + c \frac{\partial v_{fl}}{\partial t}
\]

2 stages

During the shaking: consolidation + dynamic strains
Dynamic loading of the soil mass: \(t^{*}_{\text{dyn}} = 1/n \)
Pore pressure dissipation: \(t^{*}_{\text{diff}} = 1/n^2 \)

After the shaking: consolidation
Pore pressure dissipation: \(t^{*}_{\text{diff}} = 1/n^2 \)
• Scaling law of water flow in centrifuge models

Stewart et al., 1998

Nondimensional time factor (consolidation)

\[T = \frac{c_v t_{\text{diff}}}{h^2} = \frac{k m_v t_{\text{diff}}}{\mu h^2} \]

If \(\mu^* = n \), \(t_{\text{diff}}^* = t_{\text{dyn}}^* \)

Hypothesis: Darcy law valuable

30g centrifuge

\(\mu_{\text{HPMC}} = 10 \times \mu_{\text{water}} \)

\(v_{\mu} = \frac{k}{\mu} \text{grad}P \)

\(v_{\mu}^* = v^* = 1 \)

\(t_{\text{diff}}^* = t_{\text{dyn}}^* \)

\(\mu_m = n \times \mu_\rho \)

\(R_e^* = \frac{\rho^* v^* d_i^*}{\mu} = \frac{1 \times 1 \times 1}{n} = \frac{1}{n} \)

(Stewart et al., 1998)
• grain size effects on interfaces and shear band patterns

- Scale effects on shear mobilisation (Garnier & König, 1998)

Scaling effects?
- roughness effect : R/D50
- pile diameter effect : B/D50

(Garnier & König, 1998)
Roughness effect : R/D50

Normalized roughness: $R_n = \frac{R_{\text{max}}}{D_{50}}$

Shear box tests (steel/sand interface)

Centrifuge pull out test on vertical piles (b=12mm, D50=0.2mm 50g)

Three different zones of roughness

- **smooth interface**: interfacial shear along the soil-grain contact, small strength, no dilatancy
- Intermediate roughness: frictional resistance increases with the increase in roughness, low dilantency
- **Large roughness** (rough interface): internal shear localised in shear band into the sand friction angle independant from the roughness, large dilantency
Pile diameter effect: B/D_{50}

- Balachoski tests (1995)
 - Hostun sand $d_{50}=0.32$mm
 - Pile diameter BB: 16 to 55mm
 - Centrifuge acceleration: 100g
- LCPC tests
 - Fontainebleau sand $D_{50}=0.2$ mm
 - Pile diameter B from 2 to 36 mm
 - Centrifuge acceleration: 50g

If $B/d_{50} > 100$ scale effect on τ_p is limited